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1 

ABSTRACT	1 

The	concept	of	smart	grid	incorporates	a	network	of	generation,	transmission	and	distribution	2 
components	that	undertake	power	delivery	from	bulk	generation	power	plants	and	distributed	3 
generation	to	various	types	of	loads.	The	components	are	governed	and	managed	by	intelligent	4 
devices	 from	generation	 to	 consumption,	 and	can	be	optimized	based	on	environmental	 and	5 
economic	constraints.	A	smart	grid	allows	utilities	to	engage	consumers	in	power	generation	at	6 
the	 residential	 and	 industrial	 level,	 and	 may	 implement	 a	 bidirectional	 power	 exchange.	 To	7 
enable	being	“smart”,	a	huge	amount	of	data	is	exchanged	between	grid	components	and	the	8 
enterprise	 systems	 that	 manage	 these	 components.	 	 Based	 on	 the	 application,	 information	9 
exchanged	enables	economically	optimized	bidirectional	power	 flow	between	a	utility	and	 its	10 
customers.	 Data	 exchange	 is	 essential	 for	 controlling,	 monitoring	 and	 coordination	 between	11 
smart	equipment	in	a	smart	grid	subsystem.	For	optimal	performance,	big	data	analytics	are	a	12 
necessity,	and	local	autonomous	control	is	achieved	when	artificial	intelligence	is	applied	using	13 
machine	learning	techniques.	This	paper	reviews	the	applications	of	big	data	analytics,	machine	14 
learning	and	artificial	intelligence	in	the	smart	grid.		Benefits,	challenges,	impacts	and	problems	15 
of	 employing	 these	 techniques	 are	 presented.	 Some	 big	 data	 analytics	 approaches	 for	16 
computing	and	transmitting	data	are	detailed.	17 

		18 

Keywords:	 Smart	 Grid,	 Big	 Data	 Analytics,	 Machine	 Learning,	 Artificial	 intelligence,	 Cloud	19 
Computing,	Edge	Computing,	Internet	of	Things,	Data	Acquisition	Framework,	Cyber-Security	20 
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1.		IEEE	SMART	GRID	BIG	DATA	ANALYTICS,	MACHINE	LEARNING	AND	1 

ARTIFICIAL	INTELLIGENCE	WORKING	GROUP	WHITE	PAPER	SERIES	2 

This	white	paper	is	the	first	in	a	series	of	white	papers	developed	by	the	IEEE	Smart	Grid	Big	3 
Data	Analytics,	Machine	Learning	and	Artificial	Intelligence	(BDA/ML/AI)	working	group.	The	4 
intent	of	the	series	is	to	provide	a	concise	view	into	the	current	status	of,	benefits	of,	challenges	5 
to,	best	practices	in	and	standards	for	BDA/ML/AI	in	the	smart	grid.	6 
		7 
The	IEEE	Smart	Grid	BDA/ML/AI	White	Paper	Series	will	comprise	the	following	white	papers:	8 
		9 
1. Introduction	to	BDA/ML/AI,	Benefits,	Challenges	and	Issues	10 
2. Best	Practices	in	Big	Data	Analytics	for	the	Smart	Grid	11 
3. Big	Data	Analytics	in	the	Smart	Grid:	Recommended	Standards,	Existing	Frameworks	and	12 

Future	Needs	13 
4. Potential	Applications	and	Improvements	/	Solutions	to	Issues:		A	sub-series	of	application-	14 

and	solution-specific	white	papers	organized	by	IEEE	Smart	Grid	domain	and	sub-domain	15 
categorization.	The	intent	is	to	have	this	subseries	of	smart	grid	analytics	white	papers	16 
cover	the	scope	of	these	domains	and	subdomains.	17 

 18 
 	19 
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2.		INTRODUCTION	1 
 2 
The	 smart	 grid	 refers	 to	 an	 advanced	 communication	 and	 information	 infrastructure	 that	3 
enables	 optimization	 in	 energy	 production,	 transmission,	 distribution	 and	 storage.	 Other	4 
benefits	 involve	 system	management	automation,	educated	planning,	 lower	 costs	 and	effort,	5 
and	electricity	system	reliability	improvement	[1].	The	characteristics	of	smart	grids	involve	the	6 
whole	spectrum	of	the	power	system,	from	generators	and	energy	suppliers	to	end-consumers	7 
[2].	 Smart	 grids	 include	 the	 ability	 to	 enable	 active	 customer	 participation,	 and	 facilitate	8 
accommodation	of	power	generation	and	storage	options.	A	perspective	view	of	the	smart	grid	9 
shows	one	entity	consisting	of	multiple	domains.	These	domains	can	be	viewed	as	a	chain	of	10 
domains	 for	 power	 service,	 starting	 from	 the	 generation	 and	 ending	 with	 the	 customer.	11 
However,	these	domains	are	coupled	with	the	help	of	functional	support	systems	that	involve	12 
many	 aspects	 of	 data	 management	 and	 communications,	 insuring	 system	 resiliency	 and	13 
efficiency	and	subsequently	economic	and	environmental	projections.	The	domain	definitions	14 
were	 adapted	 by	 IEEE	 Smart	 Grid	 based	 on	 National	 Institute	 of	 Standards	 and	 Technology	15 
(NIST)	definitions	 [4].	A	conceptual	model	of	 the	smart	grid	domains	and	 their	 interactions	 is	16 
shown	in	Fig.	1.	17 
	18 
In	 addition	 to	 integration	 of	 distributed	 energy	 resources	 (DER),	 the	 key	 drivers	 for	 the	19 
development	of	the	smart	grid	are	recent	technology	breakthroughs	in	energy	storage,	electric	20 
vehicles	(EV)	and	operation	and	efficiency	improvements	required	to	ensure	network	resilience	21 
and	security	of	supply.	Future	energy	systems	shall	include	the	legacy	power	equipment	within	22 
the	 grid	 infrastructure,	 with	 estimates	 that	 the	 US	 electricity	 grid	 will	 require	 $2	 trillion	 in	23 
network	upgrades	by	2030	[5].	According	to	the	European	Commission,	the	transition	towards	a	24 
more	 sustainable	 and	 secure	energy	 system	would	 require	 an	 investment	of	 €200	billion	per	25 
year	in	the	EU	for	generation,	networks	and	energy	efficiency	developments	[3].	26 
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	1 

	2 
	3 
Figure	1:	Interaction	of	roles	in	smart	grid	domains	[12]		4 

	5 
		6 
The	bidirectional	flow	of	electricity	and	information	is	an	essential	field	in	the	smart	grid.	With	7 
the	growing	electricity	supply	from	smaller-scale,	decentralized	generators,	i.e.,	wind	farms	and	8 
residential	 rooftop	 photovoltaics	 (PV)	 panels,	 and	microgrids,	 advanced	 sensor	 and	metering	9 
technologies	with	 integrated	security	protocols	allow	for	envisioned	advanced	features	of	the	10 
smart	grid,	such	as	demand	response,	autonomous	control,	self-healing	and	self-configuration	11 
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[6].	Essentially,	the	smart	grid	provides	significant	improvements	to	traditional	power	systems	1 
that	 include	 six	 essential	 building	blocks,	 namely,	 network,	 user,	 hardware,	 software,	 servers	2 
and	data	[7].	3 
	4 
These	characteristics	make	it	challenging	for	traditional	analysis,	but	ideal	for	the	application	of	5 
artificial	intelligence,	machine	learning	techniques	and	big	data	analytics.	In	this	paper,	we	will	6 
use	the	term	Big	Data	Analytics	(BDA)	to	refer	to	the	collective	data	analytics,	machine	learning	7 
and	 AI.	 The	 objective	 of	 BDA	 is	 to	 investigate	 the	 very	 large	 volumes	 of	 data	 produced	 by	8 
various	components	 in	the	smart	grid,	and	transform	the	data	 into	meaningful	 inputs	such	as	9 
patterns	 of	 operation,	 alarm	 trends,	 fault	 detection,	 and	 control	 commands.	 	 For	 example,	10 
advanced	 machine	 learning	 applications	 for	 distribution	 transformers	 analyze	 the	 data	11 
aggregated	in	real-time	for	each	transformer.	The	outcome	of	these	learning	applications	may	12 
identify	some	operating	trends	leading	to	failure	patterns	of	these	devices	and	help	anticipate	13 
future	 failures,	 and	 consequently,	 provide	 timely	 and	 accurate	 insights	 for	 predictive	14 
maintenance.	15 
	16 
Research	efforts	in	smart	grid	deployments	have	focused	on	advanced	metering	infrastructure	17 
(AMI),	 such	 as	 smart	 meters,	 communication,	 information,	 control	 and	 energy	management	18 
systems	for	utilities	and	consumer-based	equipment	(e.g.,	smart	home	energy	controllers	and	19 
building	 monitoring	 systems).	 Moreover,	 other	 application	 areas	 include	 the	 integration	 of	20 
automation,	control	and	real-time	monitoring	of	advanced	sensors	and	monitoring	equipment.		21 
This	can	be	accomplished	with	field	devices,	such	as	phasor	measurement	units	and	intelligent	22 
electronic	devices	(IED),	at	the	transmission	level	and	automated	feeder	switches,	and	network	23 
protection	relays,	voltage	regulators,	and	capacitor	controllers	at	 the	distribution	 level.	These	24 
actions	 aim	 to	 enhance	 power	 system	 performance	 and	 diagnostics	 that	 will	 lead	 to	 cost	25 
reduction.	26 
	27 
A	significant	portion	of	 the	 smart	devices	being	deployed	 is	 related	 to	 the	massive	 rollout	of	28 
smart	meters	currently	taking	place	in	many	countries.	The	number	of	smart	meter	readings	for	29 
a	 large	utility	 company	 is	 expected	 to	 rise	 from	24	million	 a	 year	 to	 220	million	per	 day	 [7].	30 
Approximately	22GB	of	smart	meter	data	is	being	generated	by	2	million	customers	per	day	[8].	31 
Assuming	that	an	application	requires	data	collection	 in	15	minute	 intervals,	1	million	devices	32 
would	result	in	35.04	billion	data	entries	with	a	total	volume	of	2920	Tb	per	year	[7].	The	other	33 
portion	 of	 smart	 grid	 devices	 relates	 to	 cutting-edge	 network	 devices,	 such	 as	 IEDs	 being	34 
installed	 in	 power	 system	networks	 to	monitor	 key	 network	 parameters	 and	 generation	 and	35 
consumption	in	real	time,	control	power	flows,	exchange	information	with	each	other	and	have	36 
local	decision-making	capability.	37 
	38 
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Traditional	 approaches	 of	 data	 analysis	 are	 inadequate	 to	 cope	 with	 the	 high	 volume	 and	1 
frequency	of	data	generated	within	the	smart	grid	paradigm	by	various	distributed	sources.	This	2 
makes	 optimization	 and	 smart	management	 challenging	 and	 computationally	 intensive.	 Data	3 
are	generated	by	multiple	heterogeneous	sources	including	sensors,	IEDs,	smart	meters,	smart	4 
appliances,	 distribution	 automation	 data,	 third-party	 data,	 asset	 management	 data	 and	5 
weather	station	data	playing	an	increasingly	important	role	for	managing	intermittent	DERs	[7].	6 
Data	 need	 to	 be	 transformed	 into	 actionable	 insights	 by	 applying	 high	 volume	 data	7 
management	 and	 advanced	 analytics	 (i.e.,	 BDA)	 [9].	 Essentially,	 BDA	 represents	 advanced	8 
analytics,	such	as	predictive	analytics,	data	mining,	statistical	analysis,	machine	learning	and	AI	9 
techniques,	which	operate	on	large	data	sets	having	one	or	more	features	of	big	data	[10].	10 
	11 
Local	 and	 distributed	 control	 architectures	 can	 provide	 solutions	 that	 can	 reduce	 the	 data	12 
transmission	 load	 and	 computational	 resources	 required,	 as	 opposed	 to	 centrally	 controlled	13 
decision-making.	BDA	techniques	can	provide	solutions	as	the	complexity	of	the	power	system	14 
continues	to	grow	[11].	15 
 16 
 	17 
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3.	CONCEPTUAL	DEFINITIONS	of	BIG	DATA	ANALYTICS,	MACHINE	1 
LEARNING,	AND	ARTIFICIAL	INTELLIGENCE	2 
 3 
Before	moving	forward,	we	need	to	understand	several	terms	which	are	interrelated	(as	4 
illustrated	in	Fig.	2)	and	commonly	used	in	different	contexts	while	performing	analytics	in	the	5 
smart	grid.	These	terms	are:	6 
		7 
Statistics:	It	is	the	study	of	the	collection,	analysis,	interpretation,	presentation,	and	8 
organization	of	data.		Further,	it	can	also	be	defined	as	the	mathematics	of	estimating	9 
parameters	of	populations	based	on	data	from	different	representative	samples	of	those	10 
populations.		In	statistics,	the	standard	procedure	for	statisticians	is	to	start	with	a	null	11 
hypothesis	(a	default	position	that	there	is	no	relationship	between	two	quantities)	which	is	12 
compared	with	an	alternate	hypothesis	(a	position	that	states	there	is	a	relationship	between	13 
two	quantities).	The	decision	to	reject	a	hypothesis	is	taken	on	the	basis	of	various	statistical	14 
tests	which	are	performed	on	different	population	samples.	15 
		16 
Data	Analytics:	It	is	the	discovery	and	communication	of	meaningful	patterns	in	data	[13].		Data	17 
analytics	is	a	(sometimes	automated)	process	used	to	discover	novel,	valid,	useful	and	18 
potentially	interesting	knowledge	from	large	data	sources	which	is	otherwise	difficult	to	19 
uncover.		If	statistics	is	to	be	considered	a	branch	of	mathematics,	data	analytics	is	inclined	20 
towards	performing	the	same	functionality	for	computer	science.	Visual	tools	and	techniques	21 
are	the	preferred	means	of	communicating	the	results	of	performing	data	analytics.		22 
		23 
Machine	Learning:	It	is	the	ability	of	machines	(associated	with	computers)	to	learn	24 
automatically	without	being	explicitly	programmed.	It	deals	with	representation	and	25 
generalization	of	data	and	creates	a	representation	of	instances	and	functions	which	are	26 
evaluated	on	these	data.	Generalization	is	the	unique	property	that	the	machine	learning	27 
systems	will	try	to	yield,	that	is,	the	ability	of	the	systems	to	perform	well	even	on	unseen	data	28 
instances.			29 
	30 
Artificial	Intelligence:	It	is	the	intelligence	exhibited	by	machines,	as	opposed	to	natural	31 
intelligence	exhibited	by	humans	or	animals.		AI	encompasses	techniques	which	can	endow	an	32 
object	or	a	program	with	human-like	intelligence.	AI	also	includes	intelligent	agents,	entities	33 
that	perceive	their	environment	and	take	actions	based	on	that	perception.			34 
	35 
		36 
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	 	1 
		2 
Figure	2.	Venn	diagram	illustrating	the	interconnectedness	of	statistics,	data	analytics,	machine	3 
learning	and	artificial	intelligence.	4 
	5 
	6 
The	purpose	of	different	types	of	analytics	change	as	we	move	along	the	continuum	of	value	7 
(Fig.	3)	as	follows:	8 
	9 

● Descriptive	analytics	aim	to	provide	information	about	what	happened	and	it	comprises	10 
the	first	step	that	tries	to	identify	useful	information/data	for	further	processing.	It	11 
might	include	data	visualization,	data	mining	or	aggregation	of	reports. 12 

● Diagnostic	analytics	aim	to	understand	the	cause	of	events	and	system	behavior	and	13 
tries	to	identify	challenges	and	opportunities. 14 

● Predictive	analytics	are	used	to	make	probabilistic	predictions	to	identify	trends	with	the	15 
aim	to	determine	what	might	happen	in	the	future. 16 

● Prescriptive	analytics	are	applied	to	identify	the	best	outcome	to	events,	given	the	17 
system’s	parameters,	and	draw	strategies	to	deal	with	similar	events	in	the	future.	It	18 
uses	tools	such	as	simulation	techniques	and	decision	support	to	explore	optimal	19 
strategies	to	best	take	advantage	of	a	future	opportunity	or	to	mitigate	a	future	risk	20 
[14]. 21 

		22 
	23 
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	1 
Figure	3.		Statistics,	Analytics,	Machine	Learning	and	Artificial	Intelligence	in	context	of	type	of	2 
analysis	conducted.		(Adapted	from	[15])	3 
	4 
	5 
3.1	 Typical	Applications	of	Big	Data	Analytics,	Machine	Learning	and	Artificial	6 
Intelligence	in	the	Smart	Grid	7 
	8 
To	illustrate	how	big	data	analytics,	machine	learning	and	artificial	intelligence	are	used	in	the	9 
smart	grid,	this	section	provides	examples	of	typical	applications	relevant	to	the	smart	grid.	10 
These	examples	are	provided	as	illustration	and	are,	in	no	way,	comprehensive.		Section	4	lists	11 
additional	expected	smart	grid-relevant	applications.		At	present,	there	is	a	lack	of	typical	12 
applications	of	artificial	intelligence	in	the	smart	grid	beyond	the	application	of	ML.		However,	13 
there	are	a	growing	number	of	new	models,	e.g.,	deep	learning	and	reinforcement	learning,	14 
that	show	promise	towards	enabling	AI	use	in	the	smart	grid.	15 
 16 
3.1.1	 Big	Data	Analytics	Applications	17 
Data	generated	in	the	smart	grid	are	difficult	to	handle	with	traditional	analysis	techniques	to	18 
produce	actionable	 information	within	useful	 timeframes,	as	 required	by	 the	nature	of	 smart	19 
grid	 operations.	 Smart	 grid	 data	 can	 be	 classified	 as	 big	 data	 according	 to	 the	 5Vs	 (Volume,	20 
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Velocity,	 Variety,	 Veracity	 and	 Value)	 model	 shown	 in	 Fig.	 4.	 Smart	 grid	 data	 exhibits	 each	1 
feature	of	the	model	as	described	in	Table	1.	2 
	3 

	4 
	5 

	6 
Figure	4:	The	features	of	5Vs	Big	Data	model	[7]	7 

	8 
Table	1	Smart	grid	data	compliance	with	the	5Vs	Big	Data	model	[7]	9 

Feature	 5Vs	Model	 Smart	Grid	
Volume	 Number	of	records	and	required	

storage	
High	volumes	of	data	from	smart	meters	and	
advanced	sensor	technology	

Velocity	 Frequency	of	data	generation,	
transfer	or	collection	

If	smart	meter	data	are	collected	every	15	
minutes,	1	million	devices	result	in	35.04	billion	
data	entries	or	2920	Tb	per	year	[7].	The	
frequency	data	are	collected	is	crucial	for	real-
time	monitoring	and	analysis.	

Variety	 Diversity	of	sources,	formats,	
multidimensional	fields	

Existence	of	structured	(e.g.,	relational	data),	
semi-structured	(e.g.,	web	service	data)	and	
unstructured	data	(e.g.,	video	data)	

Veracity	 Reliability	and	quality	of	data	 Reliable	data	are	crucial	to	ensuring	safe	
system	operation	and	stability.	

Value	 Extracting	useful	benefits	and	
insights	

Applications	derive	value	from	smart	grid	data,	
e.g.,	predicting	future	generation	and	demand.	

 10 
 11 
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The	results	of	big	data	analytics	can	be	used	to	predict	and	understand	end-consumer	behavior,	1 
to	improve	network	resilience	and	faults,	to	enhance	security	and	monitoring,	to	enhance	2 
performance	and	to	optimize	available	resources	and	future	planning.	3 
 4 
3.1.2	 Machine	Learning	Applications	5 
Machine	learning	algorithms	are	particularly	used	for	clustering	data	gathered	from	the	smart	6 
grid	 domain	 [16].	 Data	 are	 clustered	 to	 form	 groups	 with	 similar	 characteristics	 (natural	7 
classification),	e.g.,	grouping	together	data	points	with	similar	active/reactive	power	profiles	for	8 
transmission	 system	 operator	 (TSO)	 studies.	 Other	 examples	 include	 identifying	 low	 voltage	9 
(LV)	 feeders	 with	 similar	 load	 patterns	 for	 distribution	 system	 operator	 (DSO)	 studies	 to	 be	10 
compressed	 or	 summarized	 into	 cluster	 prototypes	 (e.g.,	 generating	 representative	 days	 for	11 
wind	production	and	their	inclusion	into	network	simulations).	Further,	ML	can	use	smart	grid	12 
data	 to	 understand	 the	 underlying	 structure,	 to	 gain	 useful	 insights,	 detect	 anomalies	 and	13 
generate	hypotheses,	etc.	 (e.g.,	detect	 theft	 and	understand	user	 consumption	behavior	at	a	14 
particular	feeder).	Predictions	play	a	significant	role	in	power	systems	as	they	are	typically	used	15 
to	plan	 future	 aggregated	electricity	demand,	 future	 system	 supply,	 estimating	 flexibility	 and	16 
reserve	services	requirements	or	operational	management	of	distribution	networks.	17 
	18 
3.1.3	Multi-Agent	System	Applications	19 
An	application	of	AI	 in	 the	 smart	 grid	 context	 is	multi-agent	 system	 (MAS)	modelling.	As	 the	20 
power	 system	 becomes	 more	 decentralized,	 market-oriented,	 multi-variable	 and	 complex,	21 
control	and	decision-making	through	a	centralized	approach	becomes	challenging	as	it	requires	22 
significant	computational	power	to	determine	optimal	decisions	for	the	entire	system	without	23 
significant	delays.	An	improved	approach	is	to	divide	the	power	system	into	more	autonomous	24 
units	 that	 can	 make	 some	 of	 the	 decisions	 locally,	 following	 decentralized	 or	 distributed	25 
control.	MAS	approaches	can	be	used	to	solve	complex	problems	 in	an	efficient,	scalable	and	26 
distributed	way	[17].	Potential	applications	of	MAS	in	the	context	of	the	smart	grid	include	the	27 
control	 of	 microgrids,	 fault	 management	 and	 disturbance	 diagnosis,	 self-healing	 and	 power	28 
restoration,	 voltage	 control,	 frequency	 control,	 demand	 side	 management	 based	 on	 agent	29 
architecture,	 energy	 consumption	 optimization	 and	 scheduling	 and	 coordination	 of	 storage	30 
devices.		31 
	32 
3.2	The	Need	for	Data	Analytics	in	the	Smart	Grid	33 
	34 
The	smart	grid	gathers	data	from	diverse	sources	and	stores	it	to	be	consumable	by	analytics.	35 
Managing	smart	grids	to	provide	smart	energy	requires	advanced	machine	learning	techniques	36 
to	collect	accurate	information	in	an	automated	fashion,	automate	decision-making	and	control	37 
events	in	a	timely	manner	at	both	the	local	and	system-wide	level.	Important	progress	has	been	38 
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made	for	using	field	data	acquired	from	smart	devices	mounted	in	substations,	feeders,	and	1 
numerous	databases	and	models	across	the	utility	enterprise.	There	are	several	sources	of	data	2 
in	smart	grids	on	markets,	equipment,	geography	and	power	system	data	which	can	be	used	to	3 
predict	states,	provide	situational	awareness,	analyze	stability,	detect	faults	and	provide	4 
advance	warning.	Therefore,	analytics	(comprising	BDA,	ML	and	AI)	have	a	significant	role	to	5 
make	the	grid	more	intelligent,	efficient	and	productive.	Analytics	can	be	applied	to	signal,	6 
event,	state,	engineering	operations,	and	customer	analytics,	in	sum	enabling	high-level	and	7 
detailed	insights	into	grid	situational	awareness.	There	are	several	types	of	analytics	models,	8 
namely	descriptive,	diagnostic,	predictive,	and	prescriptive	models	(recall	Fig.	3).	These	can	be	9 
applied	for	the	smart	grid,	for	instance,	descriptive	models	describe	customer	behaviors	for	10 
demand	response	programs.	Diagnostic	models	are	used	to	understand	specific	customer	11 
behaviors	and	analyze	their	power-related	decisions.	Each	type	of	model	can	provide	valuable	12 
input	to	create	models	that	predict	future	customer	decisions	and	hence,	power	needs.	Finally,	13 
prescriptive	models	can	provide	high	level	analytics	to	influence	smart	grid	marketing,	14 
engagement	strategies	and	decision	making. 15 
 16 
Power	systems	are	required	to	evolve	for	dynamic	and	flexible	interaction	with	consumers	17 
participating	in	the	electricity	markets,	LV	control	automation,	distribution	management	system	18 
(DMS)	integration,	microgrid	control	and	balancing,	proactive	fault	identification,	self-healing	19 
and	resource	optimization.	Smart	grid	systems	are	becoming	increasingly	complex	and	20 
interconnected,	exhibiting	characteristics	of	a	“system	of	systems”.	21 
	22 
As	explained	above,	energy	systems	need	to	evolve	to	account	for	distributed	power	generation	23 
and	the	dynamic	processes	of	demand	management,	load	control	and	energy	storage	24 
management.	The	energy	system	is	currently	experiencing	significant	changes,	due	to	changes	25 
in	regulatory	frameworks	and	policies	that	relate	to	sustainability.	This	has	resulted	in	26 
significant	growth	in	the	volume,	variety	and	velocity	of	data,	a	significant	increase	in	27 
stakeholder	number	and	diversity,	but	also	providing	new	business	opportunities	for	improved	28 
economics	and	reliability.	The	need	for	data	analytics	and	novel	technologies	is	relevant	to	29 
every	stakeholder	of	the	energy	system,	including	the	system	operator,	market	operator,	30 
regulator,	service	provider,	consumers,	transmission	and	distribution	system	operators	and	31 
service	providers	and	generators.	32 
	33 
3.2.1	 Cloud	Computing�	34 
	35 
Cloud	computing	provides	the	ability	to	connect	to	software	and	data	on	the	cloud	(the	36 
Internet)	instead	of	a	local	computing	network	or	a	local	hard	drive.	It	is	the	most	recent	37 
successor	to	virtualization,	cluster	computing,	utility	computing,	and	grid	computing.	Cloud	38 
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computing	centers	largely	on	the	outsourcing	of	computing	needs	and	storage	to	cloud	1 
services.	It	is	a	system	where	users	can	connect	to	a	vast	network	of	computing	resources,	data	2 
and	servers	that	are	available	usually	on	the	Internet.		3 
	4 
Virtualization	is	the	foundation	of	cloud	computing.	Cloud	computing,	as	defined	by	Forrester	5 
[18]	is	given	as	a	pool	of	abstracted,	highly	scalable,	managed	compute	infrastructure	capable	6 
of	hosting	end-customer	applications	and	billed	by	consumption.	The	key	feature	of	cloud	7 
computing	is	that	both	the	software	and	the	information	are	stored	on	the	massive	network	of	8 
cloud	servers	rather	than	on	an	end-user’s	computer.	Cloud	computing	is	a	reliable	choice	for	9 
performing	analytics	as	it	has	abundant	resources	accessible	anywhere	and	at	any	time.		10 
There	are	many	cloud	computing	platforms,	like	those	offered	by	Amazon	Web	Services,	AT&T’s	11 
Synaptic	Hosting,	and	to	an	extent,	the	HP/Yahoo/Intel	Cloud	Computing	Testbed,	and	the	12 
IBM/Google	Cloud.	The	grid	can	be	made	to	run	more	efficiently	by	using	cloud	platforms	v.	13 
massive	local	networks.		14 
	15 
The	opportunities	and	 challenges	of	emerging	and	 future	 smart	 grids	 can	also	be	assisted	by	16 
cloud	computing.	The	advantages	of	using	cloud	computing	are:	� 17 

 18 
● Self-service	on-demand:	The	user	can	individually	provision	computing	capabilities	as	19 

needed.	Human	interaction	with	each	service	provider	is	not	required,	as	the	service	is	20 
provided	automatically.	� 21 

● Broad	network	access:	Capabilities	are	available	over	the	network.	It	can	be	accessed	22 
through	standard	internet	access	mechanisms. 23 

● Swift	elasticity:	Cloud	computing	also	supports	the	elastic	nature	of	memory	devices	24 
and	storage.	Depending	on	user	demand,	it	can	expand	and	contract.	 25 

● Measured	service:�Cloud	computing	also	offers	metering	infrastructure	to	users.	Users	26 
are	thus	able	to	provision	and	pay	just	for	their	consumed	resources.	 27 

 28 
 29 
3.2.2	 Edge	Computing	30 
 31 
In	relevance	to	the	smart	grid,	the	Internet	of	Things	(IoT)	is	a	concept	that	brings	large	32 
amounts	of	data	generated	by	an	embedded	component	of	a	variety	of	devices,	sensors	and	33 
networked	entities.	Forming	a	subsystem	of	the	smart	grid,	these	devices	may	be	bundled	in	a	34 
cyber	manner	in	order	to	aggregate	predefined	data	at	different	data	rates,	e.g.,	customer	35 
power	usage.	Many	applications	are	developed	to	utilize	the	data	sourced	at	the	edge	(v.	36 
center)	of	the	network,	and	they	process	the	aggregated	data	locally,	mitigating	unnecessary	37 
data	transmission	to	the	cloud,	and	leading	to	an	evolutionary	transition	to	the	concept	of	edge	38 



 

14 

computing.	It	is	estimated	that	by	2019;	45%	of	IoT-created	data	will	be	stored,	processed,	1 
analyzed	at	the	edge	of	the	network	[36].	Figure	5	illustrates	the	concepts	of	cloud	computing	2 
and	edge	computing.	The	last	resort	of	the	data	in	cloud	computing	is	a	data	consuming	3 
application,	while	in	edge	computing,	the	data	are	produced	and	consumed	locally.		Putting	the	4 
computing	close	to	the	data	sources	reduces	response	time	and	energy	consumption	compared	5 
to	a	cloud	computing	solution.	The	smart	grid	benefits	of	both	cloud	and	edge	computing	6 
depend	on	the	specific	application	of	same.	7 
	8 

	9 
a) cloud	computing	platform	10 

	11 

	12 
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b)	Edge	computing	platform	1 
	2 
Figure	5.		Computing	platforms	a)	Cloud	and	b)	Edge	[37]	3 
	4 

	5 
3.3	 Potential	Impact	of	using	Data	Analytics	in	the	Smart	Grid	6 
	7 
According	to	a	NIST	report,	the	benefits	of	modernization	of	power	grids	are	as	high	as	five	8 
times	the	one-time	development	cost	[19].	Initial	assessments	by	the	American	Council	for	an	9 
Energy-Efficient	Economy	predict	the	use	of	information	and	communication	technology	(ICT)	10 
and	smart	appliances	would	save	about	$80	billion	in	America’s	annual	electricity	bill	[20].	This	11 
would	only	be	possible	if	analytics	(BDA,	ML	and	AI)	are	performed	on	data	gathered	in	the	12 
smart	grid.	The	major	benefits	of	performing	analytics	include	increased	customer	satisfaction,	13 
better	resource	utilization	and	improved	quality	of	service.	However,	to	conduct	analytics,	a	14 
proper	data	acquisition	framework	is	required	to	collect,	process	and	analyze	the	data.	15 
	16 
3.3.1	 Data	Acquisition	Framework	17 
	18 
The	general	framework	for	collection	and	analysis	of	data	in	the	smart	grid	is	depicted	in	Fig.	6.	19 
The	entities	present	in	a	smart	grid	environment	include	power	generation	unit(s),	transmission	20 
lines,	 distribution	 stations	 and	 end-users.	 The	 end-users	 may	 be	 industrial,	 commercial	 or	21 
residential	users.	Apart	from	these,	end-users	also	 include	EVs	and	plug-in	hybrid	EVs	(PHEV),	22 
which	have	made	their	way	 into	 the	electricity	market	due	to	 their	growing	popularity	 in	 the	23 
transportation	sector.	24 

Data	are	gathered	in	the	cloud	infrastructure	due	to	its	various	advantages	as	discussed	above.	25 
As	 ICT	 is	 an	 integral	 part	 of	 the	 smart	 grid,	 data	 can	 be	 easily	 gathered	 from	 its	 associated	26 
entities	as	shown	in	Fig.	5.	The	data	of	smart	homes	can	be	gathered	by	placing	smart	meters	27 
and	 other	 sensors	 in	 smart	 homes.	 EV/PHEV	 data	 can	 also	 be	 collected	 whenever	 they	28 
communicate	 (with	 the	 smart	 grid	 or	 cloud)	 to	 get	 services	 or	 to	 exchange	 information.	 The	29 
access	 points	 (AP)	 are	 placed	 at	 appropriate	 places	 which	 help	 these	 entities	 exchange	30 
information	directly	or	 indirectly	via	 the	cloud.	The	data	 from	EV/PHEV	and	 the	 smart	grid	 is	31 
exchanged	 directly	 or	 through	 the	 APs	 connected	 to	 the	 cloud	 via	 the	 internet.	 The	 data	32 
collected	from	smart	meters	in	smart	homes	and	offices	are	sent	to	the	cloud	using	APs.	In	Fig.	33 
5,	distribution	stations	consist	of	various	charging	stations	to	provide	charging	to,	or	discharging	34 
of,	EVs.	These	charging	stations	also	send	their	consumption	data	to	the	cloud	with	the	help	of	35 
APs.	 The	 communication	 technologies	 that	 are	 generally	 used	 for	 transmitting	 such	 a	 large	36 
amount	of	data	to	the	cloud	are	mentioned	in	Table	2.	In	this	table,	an	object	can	be	a	smart	37 
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home,	PHEV	or	any	other	end-user	entity.	The	terms	Object-to-access_point	and	Access_point-1 
to-cloud	indicate	medium-	and	long-range	communication,	respectively.	2 

 3 
 4 

Figure	6:	Framework	for	data	acquisition	and	analysis	in	the	Smart	Grid	5 

Table	2:	Communication	technologies	used	for	data	transmission.	6 

Communication	
scenario	

Alternatives	 Protocols	used	 Frequency	bands	 Data	rate	

Object-to-
access_point	

DSA	
	

IEEE	802.11af		
[21]	

470-790	MHz	 1	Mbps	

DSRC/WAVE	
	

IEEE	802.11p	[22]		 5.850-5.925	GHz	 3-27	Mbps	

Access_point-to-	
cloud	

Wi-Fi	
	

IEEE	802.11	a/b/g	
[23]	

2.4	-	5	GHz	 1-54	Mbps	

WiMAX	
	

IEEE	802.16	[24]	 1.25	-	20	MHz	 30	Mbps	–	1	Gbps	

LTE/LTE-A	
	

-	 20	MHz	–	100	
MHz	

300	Mbps	–	3	
Gbps	

DSA	-	Dynamic	Spectrum	Access	7 
DSRC	-	Dedicated	short-range	communication	8 
WAVE	-	Wireless	Access	in	Vehicular	Environment					9 
WiMAX	-	Worldwide	Interoperability	for	Microwave	Access	 	 	 	 	 	 									10 
LTE	-	Long	Term	Evolution	11 
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LTE-A	–	Long	Term	Evolution	Advanced	1 
	2 
Apart	 from	 the	 framework	 depicted	 in	 Fig.	 5,	 data	 can	 also	 be	 collected	 from	 other	 sources	3 
involving	different	technologies	as	given	in	Table	3.	4 

 5 
Table	3:	Other	sources	of	data.	6 

Data	type	sources	
	

Technology	
involved	

Remarks	

Advanced	metering	
infrastructure	

Smart	meters	 Due	to	increase	in	adoption	of	smart	meters	
in	homes,	data	generated	by	these	meters	
has	increased	significantly.	

Distribution	
automation	

Grid	equipment	 For	real-time	monitoring	and	control	of	the	
grid,	the	sensors	are	deployed	in	distribution	
systems	which	take	multiple	samples	of	data	
per	unit	of	time.	

Off-grid	data	 Third	party	
datasets	

To	study	the	effect	of	utility	policies	on	
consumer	behavior,	utilities	are	integrating	
data	from	third	party	sources.	

	7 
Once	 the	data	 are	 gathered,	 data	 analytics	 techniques	 can	be	 applied	 to	 these	 data	 and	 the	8 
results	can	be	communicated	back	to	the	smart	grid	or	utilities	(and	other	entities,	if	necessary)	9 
for	decision-making.		10 
 11 
3.3.2	 Extracting	Value	by	using	Data	Analytics	12 
	13 
The	main	aim	of	using	BDA	is	to	extract	useful	information	(value)	from	the	data.	This	value	can	14 
be	extracted	from	the	gathered	data	after	performing	analytics	on	the	data	as	illustrated	in	Fig.	15 
7.	Utilities	and	consumers	may	make	informed	decisions	based	on	the	resulting	value.	16 

	17 
	18 

	19 

Figure	7:	Example	of	extracting	value	using	BDA	[25].	20 
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	 	1 
As	shown	in	Fig.	7,	the	first	step	is	to	collect	data	on	which	analytics	will	be	performed.	The	data	2 
can	be	collected	from	many	sources,	e.g.,	smart	meters,	smart	devices,	and	third-party	3 
datasets.	Once	the	data	are	collected,	the	next	step	is	data	pre-processing.	In	this	step,	the	data	4 
from	various	sources	(in	a	variety	of	formats	and	possibly	containing	missing	or	erroneous	5 
values)	are	extracted.	These	data	values	are	then	cleaned	to	remove	erroneous	values.	The	data	6 
are	then	transformed	to	the	target	repository’s	format,	after	which	data	are	loaded	into	a	7 
repository.	Now	data	analytics	techniques	are	applied	on	the	pre-processed	data	to	extract	8 
value	(i.e.,	information)	based	upon	which	some	informed	actions	or	decisions	can	be	made.	9 
The	analytics	performed	to	extract	value	can	be	divided	into	three	broad	categories	viz.	10 
consumer	analytics,	operational	analytics	and	enterprise	analytics	[25].	Consumer	analytics	11 
include	energy	forecasting,	consumption	analysis	and	theft	detection.	Operational	analytics	12 
include	asset	maintenance,	outage	management,	and	distribution	optimization.	Enterprise	13 
analytics	include	real-time	grid	awareness	and	visualization	of	data.	14 
	15 
3.4	 Security	in	the	Smart	Grid	16 
	17 
In	the	smart	grid	environment,	millions	of	devices	and	infrastructures	are	connected	and	18 
interrelated	using	communication	links	and	this	exposes	the	grid	to	possible	security	19 
vulnerabilities.	Furthermore,	cloud	computing	enables	applications	to	be	virtualized;	however,	20 
sharing	the	platform	with	millions	of	users	creates	some	security	concerns.	Besides,	the	smart	21 
grid	must	be	highly	scalable	and	accessible	in	real	time	application	where	low	latency	might	be	22 
a	huge	challenge.	Therefore,	there	are	many	cyber-security	dimensions	such	as	security	23 
availability,	integrity,	confidentiality	and	accountability	that	increase	the	risk	of	compromising	24 
the	smart	grid.	25 
	26 
3.4.1	 Cyber-Security	Detection	27 
	28 
The	electricity	industry	has	experienced	the	first	known	successful	cyber-attack	on	a	power	grid	29 
suffered	by	the	Ukrainian	distribution	company	in	December	of	2015,	where	30	substations	30 
were	switch	off,	and	over	200	thousand	people	were	left	without	electricity	for	a	duration	from	31 
1	to	6	hours	[45].	Following	the	incident,	the	investigation	uncovered	a	complex	cyberattack	32 
consisting	of	spear-phishing	emails	with	malware	compromising	the	corporate	networks,	33 
seizure	of	the	supervisory	control	and	data	acquisition	(SCADA)	system	and	remotely	switching	34 
off	the	substations,	destruction	of	server	files,	and	disabling	of	information	technology	(IT)	35 
infrastructure	components.	While	the	threat	landscape	continues	to	evolve,	organizations	are	36 
most	concerned	about	cybercriminals	using	phishing	and	unknown	malware	methodologies.	If	37 
malware	evolves	and	re-engineers	itself	constantly	as	it	spreads,	the	traditional	malware	38 
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detection	methods	of	searching	for	specific	code	signatures	will	not	be	effective.	Given	the	1 
enormous	amount	of	historical	and	ongoing	cyber-security	data	collection	available	for	analysis,	2 
AI	and	machine	learning	algorithms	are	powerful	tools	available	to	incorporate	into	the	cyber-3 
security	strategy.	The	opportunities	for	significant	impact	in	cyber	security	defense	using	AI	may	4 
include	the	following:	earlier	detection	of	new	or	unknown	malware	based	on	historical	5 
baselines,	improving	the	efficiency	of	updating	the	malware	signature	database,	and	increasing	6 
IT	staff	productivity	through	reduction	of	number	of	incidents	that	must	be	investigated	and	7 
remediated.	8 
	9 
3.4.2	 Cyber-Physical	Theft	10 
	11 
Electricity	theft	in	the	power	grid	has	been	a	major	concern	for	utilities	and	causes	huge	12 
economic	losses.		According	to	the	Northeast	Group,	LLC,	utilities	lose	up	to	$90	billion	13 
worldwide	as	a	result	of	electricity	theft	[26].	Generally,	electricity	theft	can	be	categorized	into	14 
physical	and	cyber-attacks.	Physical	attacks	are	carried	out	by	manually	tapping	the	electrical	15 
supply	from	a	neighborhood	or	directly	from	the	feeder.	However,	with	advancements	in	16 
communication	technology,	one	can	also	initialize	remote	theft	on	the	grid	using	the	Internet,	17 
known	as	a	cyber-attack.	The	most	commonly	occurring	cyber-attack	on	the	grid	is	cyber-18 
tampering,	through	which	the	attacker	maliciously	alters	meter	consumption	data,	ultimately	19 
leading	to	a	reduced	electricity	bill	for	the	building	associated	with	the	meter.		20 
	21 
In	part	to	improve	the	grid’s	resilience	against	such	attacks,	utility	companies	are	investing	22 
billions	of	dollars	on	smart	grid	infrastructure.	However,	infrastructure	changes	alone	will	not	23 
prevent	cyber-attacks	on	the	grid.	To	address	this	issue,	advanced	ML	and	AI	techniques	can	be	24 
leveraged	by	the	utilities.	These	techniques	are	capable	of	learning	user	behavior	from	25 
historical	data	and	can	easily	identify	anomalies	in	user	behavior	[27].	For	example,	a	sudden	26 
reduction	in	the	consumer’s	use	can	serve	as	an	indicator	for	theft.	Machine	learning	and	27 
artificial	intelligence	techniques	need	data	to	formulate	precise	models	for	detecting	cyber-28 
attacks.	This	data	can	be	gathered	from	various	sensors	deployed	across	the	electricity	network	29 
and	can	be	processed	in	real-time	using	cloud	services	and	edge	computing.	So,	deployment	of	30 
machine	learning	models	to	analyze	this	data	can	help	to	generate	useful	information	which	31 
can	be	used	to	identify	and	thwart	cyber-attacks.		32 
	33 
For	example,	the	authors	in	[27]	used	the	data	gathered	from	sensors	deployed	on	transmission	34 
lines,	the	distribution	station	and	transformer	levels	to	check	power	lines	that	are	prone	to	35 
physical	tapping.	The	authors	leveraged	consumers’	smart	meter	data	and	applied	ML	36 
techniques	on	those	data	to	identify	the	consumers	who	tampered	with	the	smart	meters.	37 
	38 
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3.4.3	 Internet	of	Things	and	the	Smart	Grid	1 
 2 
In	 2016,	 the	 number	 of	 connected	 devices	 used	 worldwide	 was	 reported	 as	 6.4	 billion	 by	3 
Gartner	[28]	and	it	is	expected	to	reach	20.8	billion	by	2020.	This	report	also	notes	that	about	4 
5.5	 million	 new	 devices	 were	 connected	 each	 day	 in	 2016	 alone.	 The	 smart	 grid,	 as	 a	 big	5 
consumer	of	autonomous	connected	devices,	not	only	utilizes	millions	of	IoT	devices,	but	also	6 
analyzes	 very	 large	 volumes	 of	 created	 data	 to	 make	 better	 decisions	 about	 smart	 grid	7 
networks.	Ninety-one	million	smart	meters	are	expected	by	2020,	along	with	36	million	smart	8 
interacting	 thermostats,	 and	 183	 million	 IoT	 residential	 devices.	 The	 predicted	 number	 of	9 
annual	 data	 points	 for	 15-minute	 intervals	 will	 approach	 11	 trillion	 among	 these	 categories	10 
alone.	This	stream	of	data	will	empower	deeper	analysis	of	the	grid	at	an	increasingly	granular	11 
level	to	act	and	react	in	real-time,	thereby	improving	the	efficiency	of	energy	use	[29].	Big	data	12 
analytics	 and	 IoT	 are	 integral	 parts	 of	 the	 smart	 grid.	 Therefore,	 there	 is	 a	 critical	 need	 for	13 
integration	of	machine	 learning	with	 IoT	 sensors	and	devices	at	different	 smart	grid	 levels	 to	14 
analyze	 the	 whole	 ecosystem	 to	 optimize	 the	 cost,	 balance	 the	 energy	 resources	 and	15 
consequently	form	an	intelligent	smart	grid	as	shown	in	Figure	8.	16 
	17 

	18 
Figure	8.	Machine	Learning	and	IoT	Integration:	Utility	Management	and	Control	in	Smart	Grid	19 

	20 
The	smart	grid	is	considered	one	of	the	largest	beneficiaries	of	the	IoT.	IoT	technology	can	21 
support	smart	grids	by	providing	high	penetration	of	information	sources	such	as	power	22 
production,	storage,	transmission,	distribution	and	consumption,	and	enhancing	connectivity,	23 
automation	and	monitoring	of	each	device.	The	modern	and	intelligent	smart	grid	will	not	be	24 
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cost	effective	without	IoT	technology.	Smart	grids	have	already	attained	extensive	adoption	in	1 
sensing,	transmission	and	processing	of	information,	and	now	IoT	technology	plays	an	2 
important	role	in	grid	configuration	and	connecting	legacy	equipment.	The	application	of	the	3 
IoT	in	smart	grids	may	fall	into	one	or	more	of	the	following	categories:	(i)	IoT	is	applied	for	4 
employing	different	IoT	smart	devices	for	monitoring	equipment	status,	(ii)	IoT	is	applied	for	5 
collecting	information	from	equipment	with	the	support	of	its	linked	IoT	smart	sensors	and	6 
devices	through	diverse	communication	tools	and	(iii)	IoT	is	applied	for	supervising	the	smart	7 
grid	across	application	interfaces.	In	each	of	these	categories,	machine	learning	is	used	to	8 
provide	real-time	data	analytics	and	generate	informed	decisions.	9 
	10 

 	11 
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4.	 Overview	of	Benefits,	Challenges	and	Issues	of	using	Data	1 
Analytics	in	the	Smart	Grid	2 
 3 
 4 
4.1	 Current	and	Expected	Use		5 
	6 
Several	US	states	are	actively	exploring	how	to	use	tools	and	technologies	to	realize	a	smarter	7 
grid	[30].	Example	US	projects	include:	8 
		9 

● DMS	Platform	by	the	University	of	Hawaii	[31]:		The	project	showed	both	battery	energy	10 
storage	system	and	demand	response	technologies	can	be	effective	in	reducing	peak	11 
loads	on	the	Maui	Electric	Company	(MECO)	system	and	of	individual	substations.	The	12 
experience	gained	in	this	project	will	help	MECO	integrate	distributed	and	renewable	13 
energy	resources	(PV,	wind)	with	the	operation	of	its	central	generators	and	14 
transmission	system.	15 

● Perfect	Power	by	Illinois	Institute	of	Technology	(IIT)	[46]:		The	IIT	and	partners	16 
proposed	to	develop	and	demonstrate	a	system	and	supporting	technologies	to	achieve	17 
“Perfect	Power”	at	the	main	campus	of	IIT.	Plans	are	for	a	self-healing,	learning	and	self-18 
aware	smart	grid	that	identifies	and	isolates	faults,	reroutes	power	to	accommodate	19 
load	changes	and	generation,	dispatches	generation	and	reduces	demand	based	on	20 
price	signals,	weather	forecasts,	and	loss	of	grid	power.	21 

● Some	utilities	are	using	predictive	tools	utilizing	phasor	measurement	data	for	22 
forecasting	possible	geomagnetic	disturbances	and	protecting	transformers	from	23 
damage	[38].	24 

● A	popular	application	is	asset	management	where	utilities	are	utilizing	predictive	25 
analysis	to	determine	when	their	assets	require	maintenance	[39].	26 

● Oklahoma	Gas	and	Electric	is	coupling	AMI	with	time-based	rates	and	in-home	displays	27 
to	reduce	peak	power	usage.	This	may	enable	the	utility	to	defer	the	construction	of	a	28 
170	MW	peaking	power	plant	[32].	29 

● On	July	5,	2012	a	severe	windstorm	in	Chattanooga,	TN	resulted	in	80,000	customers	30 
losing	power.	The	city	was	able	to	restore	power	to	half	of	the	affected	residents	within	31 
2	seconds	using	automated	feeder	switching	[32].	32 

● Using	synchrophasor	data	for	real-time	control,	the	Western	Electricity	Coordinating	33 
Council	determined	that	it	can	increase	the	energy	flow	along	the	California-Oregon	34 
Intertie	by	100	MW	or	more,	with	an	estimated	reduction	in	energy	costs	of	$35-75	35 
million	over	40	years	without	additional	high-voltage	capital	investments	[32].	36 

● Data	mining	and	machine	learning-based	analytics	on	historical	events	data	has	been	37 
provided	in	an	integrated	hardware-software	platform	for	real-time	event	detection	by	38 
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Tollgrade	communications.	This	has	demonstrated	the	use	of	predictive	grid-analytics	1 
on	data	collected	by	the	company’s	proprietary	smart-grid	sensors	for	preventing	2 
blackouts	to	occur	[43].	The	platform	identifies	anomalies	on	a	distribution	feeder	3 
before	they	magnify	and	thus	enables	a	proactive,	predictive	strategy	for	managing	real-4 
time	events,	similar	to	the	concept	envisaged	in	[44]	for	predictive	detection	of	5 
unintentional	islanding	in	feeders.	Utilities	like	Western	Power	Distribution	have	used	6 
this	platform	and	have	experienced	improved	reliability	indices.	7 

	8 
Some	example	smart	grid	projects	from	the	UK	include:	9 
	10 

● Network	Constraints	Early	Warning	Systems	by	Scottish	Power	Energy	Networks	[40]:	11 
The	projects	aim	to	utilize	large-scale,	distributed	smart	meter	data	to	monitor	and	12 
detect	the	risk	of	power	surges	and	voltage	excursions	outside	technical	operational	13 
limits,	in	different	parts	of	the	distribution	network	(or	subnetworks).	With	millions	of	14 
consumers,	one	cannot	collect	data	in	real	time	from	every	smart	meter/consumer	in	15 
the	network,	therefore	an	important	question	to	answer	is	what	data	granularity	is	16 
needed	for	different	parts	of	the	network	to	detect	these	excursions	and	provide	early	17 
warnings	of	potential	vulnerabilities.	18 

● Thames	Valley	Vision	by	Scottish	and	Southern	Electricity	Networks	[41]:	The	project	19 
was	the	first	scaled	deployment	of	LV	substation	monitoring	of	real	time	electricity	data	20 
and	their	integration	into	a	distribution	management	system.	Data	were	used	for	21 
substation	categorizations,	aggregation	and	forecasting	of	future	network	loading.	22 

● Home-Offshore	[42]:	The	project	aims	to	use	advanced	robotic	monitoring	and	sensing	23 
techniques	for	the	remote	inspection	and	asset	management	of	offshore	wind	farms	24 
and	their	connections.	Data	collected	will	generate	insights	for	diagnostic	and	25 
prognostic	schemes	which	will	allow	improved	information	to	be	streamed	into	multi-26 
physics	operational	models	for	offshore	wind	farms.	27 

	28 
4.2	 Benefits	and	Impacts	29 
 30 
The	use	of	BDA	can	provide	numerous	benefits	to	all	stakeholders	within	the	power	industry.	31 
For	instance,	DSOs	can	achieve	improved	coordination	of	the	supply	and	the	demand	in	32 
distribution	networks,	consumers	can	improve	their	energy	efficiency	and	achieve	significant	33 
savings	in	their	energy	bills	by	closely	monitoring	their	energy	demand,	energy	suppliers	or	34 
retailers	can	gain	insights	into	consumer	behavior	and	improve	operational	efficiency	and	35 
energy	generators	can	increase	profits	by	optimizing	their	generation	assets	and	production.		36 
TSOs	can	enhance	their	long-term	planning	by	studying	the	behavior	of	different	types	of	37 
consumers	in	groups	such	as	residential,	commercial	and	industrial	and	by	applying	ML	38 
algorithms	that	effectively	capture	the	impact	of	dispersed	generation,	which	is	often	invisible	39 
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at	a	transmission	level.	1 
	2 
Deregulated	energy	systems	have	increasingly	relied	on	service	providers	such	as	demand	3 
aggregators,	storage	providers	and	virtual	power	plants.	Service	providers’	optimal	operation	4 
and	profit	maximization	strategies	are	subject	to	uncertainty	and	need	to	account	for	the	5 
strategic	behavior	of	multiple	players	participating	in	the	energy	market.	Not	only	is	the	6 
decision-making	process	multi-variable,	but	it	needs	to	account	for	interdependencies	of	the	7 
decision	variables	at	different	time	frames.	For	example,	long	term	decisions	might	introduce	8 
constraints	to	medium	term	goals	and	operation.	Useful	techniques	to	cope	with	these	issues	9 
can	be	derived	from	the	field	of	game	theory,	which	is	suitable	to	study	strategic	interactions	10 
between	multiple	actors	and	to	identify	market	equilibria.	These	combined	with	probabilistic	11 
modelling	and	stochastic	optimization	tools,	allow	service	providers	to	reduce	costs	and	12 
maximize	revenues.	Agents	can	identify	and	learn	bidding	strategies	in	the	energy	markets,	13 
optimal	dispatching,	balancing	and	operation	of	their	assets.	In	addition,	service	providers	need	14 
to	adopt	predictive	maintenance,	prognostics	and	health	management	to	adopt	market	and	15 
operation	strategies	that	prolong	the	useful	lifetime	of	their	assets.		The	same	tools	and	16 
principles	can	be	used	for	microgrid	control	in	a	decentralized	or	distributed	fashion	and	17 
coordination	with	the	centralized	grid.		18 
	19 
Utility	companies,	especially	at	a	distribution	level,	need	to	adopt	big	data	techniques	as	the	20 
energy	system	continues	to	evolve.	Most	utilities	are	currently	restricted	to	using	descriptive	21 
and	diagnostic	analytics	that	aim	to	analyze	historical	data	or	events	to	understand	the	reasons	22 
behind	their	outcomes,	e.g.,	system	fault	management	or	outage	management.	However,	as	23 
energy	systems	grow	to	become	more	decentralized	and	reliant	on	intermittent	DER,	utilities	24 
need	to	deploy	predictive	analytics	to	evaluate	potential	future	scenarios,	such	as	evaluating	25 
future	grid	investment	requirements	and	forecasting	load	impact	and	asset	monitoring.	26 
Further,	prescriptive	analytics	can	lead	to	actionable	insights	for	planning	of	generation	and	27 
transmission/distribution	capacity	or	optimization	of	renewable	integration.	For	a	more	28 
detailed	look	at	challenges	utilities	currently	face	in	network	management,	see	Table	4.	29 
 30 

Table	4:	Network	management	issues	31 
Grid	Management	
Issue	

Example	 Consequence	

Incomplete	real-time	
monitoring	

Lack	of	
● Equipment	loading	

information 
● Status	of	switches,	

transformer	tap	changers 

● Inefficient	equipment	
utilization 

● Difficult	to	enable	
customers	to	connect	
distributed	generators	to	
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● System	momentary	fault	
location 

● Status	of	distributed	
resources 

● Customer	demand/load 

grid	and	maintain	system	
reliability 

● No	understanding	of	
automated	operations	on	
feeder 

Lack	of	system	
interoperability	

Non-integrated	systems	for	
● Customer	information	

system 
● Geographic	information	

system 
● Crew	management 
● Switch	order	

management 
● AMI 
● SCADA 

● Inefficient	work	processes 
● Redundant/inaccurate	data 
● Longer	outage	duration 
● Possible	non-compliance	of	

work	processes	with	
possible	safety	issues 

Lack	of	Diagnostics	
	

Lack	of	applications	for	
● Fault	location 
● Restoration	switching	

analysis 
● Voltage/Reactive	power	

control 
● Distribution	state	

estimation 

● Longer	outage	durations 
● Inefficient	use	of	crew	

hours 
● No	chance	to	reduce	

customer	demand	through	
voltage	control	at	peak	
times 

● Higher	system	losses 
● Increased	customer	

complaints	for	voltage	out	
of	range 

Lack	of	Prognostics	
	

● Reactive-based	
maintenance	of	
transmission	and	
distribution	network	
assets 

● SCADA	needs	improved	
scalability	to	deal	with	
high	volume	of	data	
monitored	 

● Lack	of	environmental	
monitoring 

● Expensive	maintenance 
● Increased	customer	

interruption 
● Assumption	that	condition	

monitoring	data	are	not	
dependent	on	circumstance	
data,	such	as	the	
environmental	conditions	
where	a	sensor	is	deployed,	
leading	to	potentially	
erroneous	information 

	1 
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Table	5	describes	some	of	the	issues	that	can	be	improved	significantly	by	the	use	of	BDA	in	1 
smart	grids.	2 
	3 

Table	5:	Network	management	issues	and	benefits	from	BDA	4 
Category	 Applications	
Connectivity	model	
improvement	

● Detect	incorrect	distribution	transformer	
connectivity 

● Correct	meter	phasing 
● Auto-generate	secondary	circuit	models 

Asset	management	 ● Identification	of	overloaded	or	high	utilization	
assets	(transformer	replacement,	cable	
monitoring) 

● Identification	of	under-loaded	transformers	or	
stranded	assets 

● Identification	of	transformer	voltage	issues 
Theft	and	consumer	behavior	 ● Improve	understanding	of	near	real-time	load	

profile	of	distribution	feeder 
● Identification	of	theft	or	tampered	meters 
● Using	AMI	or	smart	meters	data 
● Non-intrusive	load	monitoring 

Fault	location	and	diagnosis	 ● Identification	of	fault	occurrence	with	the	use	of	
data	from	sensors	and	monitoring	equipment,	e.g.,	
from	substations,	feeders	or	relay	data 

● Study	fault	patterns	and	types	to	help	plan	
mitigating	action	such	as	tree	trimming,	equipment	
maintenance,	etc.	

Reliability	analysis	 ● Health	state	estimation	by	data-driven	methods	
and	ML 

 5 
	6 
4.3	 Expected	Barriers/Challenges/Issues	7 
	8 
Significant	challenges	arise	when	applying	BDA	in	the	smart	grid.	These	are	summarized	below:	9 
	10 

● Data	originate	from	numerous	sources	and	come	in	different	formats	[33],	such	as	smart	11 
meters,	consumer	data,	web	data,	weather	data,	population	data,	geographic	12 
information	system	data,	DMS	data,	energy	management	system,	SCADA,	etc.	Data	13 
need	to	be	integrated	and	interoperability	between	different	devices	and	control	levels	14 
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must	be	ensured.	New	regulation	and	standardized	processes	are	required	for	data	1 
collection	and	governance	[7].	There	is	a	lack	of	standards	for	data	description	and	2 
communication,	essential	for	interoperability.	Moreover,	data	integration	and	data	3 
sharing	practices	across	institutions	need	to	be	defined	for	the	benefit	of	all	4 
stakeholders	[33]. 5 

● A	significant	issue	is	related	to	incomplete	or	missing	data.	Sensing	equipment	and	6 
smart	meters	are	not	installed	everywhere	in	the	grid	and	might	be	subject	to	failures	or	7 
malfunctions.	In	this	case,	missing	data	may	need	to	be	extrapolated	from	available	8 
data.	The	issue	becomes	extremely	important	when	it	comes	to	ML	techniques	that	rely	9 
on	good	quality	and	availability	of	data	for	algorithm	training.	Although	there	have	been	10 
significant	advances	in	ML	approaches	that	handle	the	issue	of	missing	data	well,	more	11 
needs	to	be	done.	Data	integrity	needs	to	be	ensured	by	pre-processing	techniques	and	12 
error	detection	systems	that	ensure	data	quality. 13 

● Utility	companies	need	to	install	new	IT	equipment,	such	as	sensor	equipment,	14 
hardware	and	software	tools	and	data	storage	devices	[7],	presumably	at	significant	15 
installation	and	operation	costs.	Moreover,	utilities	are	uncertain	regarding	the	16 
transition	from	a	centralized	to	a	decentralized	power	network	and	the	role	of	BDA	in	17 
future	energy	systems	[34].	 18 

● Research	challenges	remain	in	the	big	data	analytics	space.	Cloud	computing,	19 
distributed	file	management	and	new	databases	are	developed,	such	as	NoSQL	20 
databases	for	parallel	processing.	Several	ML	libraries	have	been	developed	for	batch	21 
processing	and	novel	techniques	are	being	developed	for	stream	processing.	However,	22 
further	improvement	is	required	to	adhere	to	the	time	response	requirements	of	the	23 
smart	grid	[34]. 24 

● Data	visualization	can	be	challenging	due	to	the	size	of	the	datasets	and	their	high	25 
dimensionality.	Current	data	analytics	tools	tend	to	have	poor	performance	for	26 
visualization	of	large	data	sets,	have	high	response	times	and	are	not	easily	scalable	27 
[34].	The	scale	of	data	can	be	handled	somewhat	by	aggregation,	however,	in	some	28 
cases	aggregation	may	hide	the	specificity	needed	for	insight. 29 

● A	continuously	growing	amount	of	data	needs	to	be	stored,	typically	in	the	cloud.	This	30 
can	lead	to	data	explosion	and	the	scalability	issue	[34].	Technical	challenges	such	as	the	31 
network	bandwidth	capacity	and	data	security	issues	remain	to	be	solved.	Fig.	8	shows	32 
the	increase	in	data	volume	as	analytics	evolve	towards	the	smart	grid	model. 33 

● Another	issue	for	ML	techniques	includes	the	potential	for	inadequate	training	data,	34 
which	may	decrease	confidence	in	the	results	of	supervised	ML	models	for	previously	35 
unwitnessed	situations.	Advances	in	semi-supervised	and	unsupervised	ML	need	to	36 
continue	to	address	this	issue.	37 
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● Special	care	is	required	for	privacy,	confidentiality	and	personal	data	protection.	1 
Significant	problems	to	be	resolved	include	data	security	protection,	intellectual	2 
property	protection,	personal	privacy	protection,	commercial	security,	network	security	3 
and	financial	information	[34]. 4 

● Security	of	data	and	smart	grid	infrastructure	is	critical.	Smart	grids	can	be	vulnerable	to	5 
cyber-attacks	or	cyber-physical	attacks.	Smart	grid	system	functionality	is	vital	for	6 
society	overall	and	contains	sensitive	information	that	needs	to	be	protected	from	7 
malicious	attacks	and	vulnerabilities.	This	includes	all	access	points	and	protection	of	8 
equipment	which	are	inherently	distributed,	but	also	data	storage	security	that	can	be	9 
obtained	by	adopting	advanced	cryptographic	techniques	and	verification	mechanisms	10 
[7]. 11 

● Energy	consumption	required	for	potentially	intensive	demand	on	computational	power	12 
is	another	important	issue	that	requires	a	cost-efficient	and	sustainable	solution	[35]. 13 

● Finally,	as	with	every	significant	transition,	there	is	a	requirement	for	a	well-trained	14 
workforce,	both	current	and	future	human	resources	[7]. 15 

● Additional	issues	include	analytics	verification	and	validation,	certification	and	16 
regulatory	compliance;	and	interoperability	of	all	elements	of	the	smart	grid.	17 

	18 
 	19 
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5.	 Conclusion	1 
	2 
This	white	paper	introduced	the	concepts	and	possible	use	cases	of	big	data	analytics,	machine	3 
learning	and	artificial	 intelligence	 in	 the	 smart	grid.	The	 smart	grid	 includes	generation	units,	4 
transmission	lines	and	distribution	systems.	Distributed	energy	resources	are	integrated	either	5 
separately	 or	 at	 the	 end-customer	 and	 then	 the	 power	 flows	 in	 different	 directions	 needing	6 
more	 modern	 devices	 for	 monitoring,	 transmitting	 and	 metering	 all	 power	 components.	7 
Monitoring,	collecting	and	transmitting	all	the	grid	parameters	involves	a	large	amount	of	data.	8 
Meanwhile,	 it	 is	 infeasible	to	swiftly	and	correctly	analyze	these	enormous	data	by	traditional	9 
methods,	which	brings	 challenges	 to	 effectively	 enabling	 the	 smart	 grid.	 Therefore,	 powerful	10 
data	 analytics	 will	 be	 adopted	 to	 manage	 the	 massive	 number	 of	 data.	 Big	 data	 analytics,	11 
machine	 learning	 and	 artificial	 intelligence	 are	 approaches	 employed	 in	 the	 smart	 grid	 to	12 
manage	 the	 data	 collected	 from	 all	 power	 meters,	 sensors	 and	 other	 appliances.	 By	 the	13 
combination	of	 these	 techniques,	 it	 is	possible	 to	know	and	expect	 load	demand,	generation	14 
volume	and	system	disturbance,	and	then	regulate	the	control	automatically	and	quickly	so	the	15 
grid	can	be	improved	and	avoid	instabilities.	Applying	analytics	effectively	in	the	smart	grid	still	16 
faces	 numerous	 difficulties.	 Most	 power	 utilities	 are	 still	 uncertain	 of	 big	 data	 analytics,	17 
machine	 learning	 and	 artificial	 intelligence	 and	 thus	 this	 article	 defined	 terms	 related	 to	18 
advanced	 analytics	 approaches	 used	 in	 smart	 grid	 and	 explained	 the	 advantages,	 challenges	19 
and	problems	of	utilizing	these	approaches.	A	brief	review	was	also	given	on	security	matters,	20 
different	impact	and	communication	technologies	in	smart	grid.			21 
 22 
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 1 
Figure	9:	The	evolution	of	grid	analytics	and	future	smart	grid	in	big	data	applications:	diverse	data	sources	create	high	2 

volumes	of	data	and	create	more	value.	Adapted	from	[14]	3 

 	4 
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Acronyms	1 
 2 
5V	 	 Five	Vs	of	Big	Data	Analytics	(Volume,	Velocity,	Variety,	Veracity,	Value)	3 
AI	 	 Artificial	Intelligence	4 
AMI	 	 Advanced	Metering	Infrastructure	5 
AP	 	 Access	Point	6 
BDA	 	 Big	Data	Analytics	7 
DER	 	 Distributed	Energy	Resource	8 
DMS	 	 Distribution	Management	System	9 
DSA	 	 Dynamic	Spectrum	Access	10 
DSO	 	 Distribution	System	Operator	11 
DSRC	 	 Dedicated	Short-Range	Communication	12 
EU	 	 European	Union	13 
EV	 	 Electric	Vehicle	14 
GB	 	 Gigabyte	15 
Gbps	 	 Gigabits	per	second	16 
GHz	 	 Gigahertz	17 
ICT	 	 Information	and	Communication	Technologies	18 
IED	 	 Intelligent	Electronic	Device	19 
IEEE	 	 Institute	of	Electrical	and	Electronics	Engineers	20 
IIT	 	 Illinois	Institute	of	Technology	21 
IoT	 	 Internet	of	Things	22 
IT	 	 Information	Technologies	23 
LLC	 	 Limited	Liability	Corporation	24 
LTE	 	 Long-Term	Evolution	25 
LTE-A	 	 Long-Term	Evolution-Advanced	26 
LV	 	 Low	Voltage	27 
MAS	 	 Multi-Agent	System	28 
Mbps	 	 Megabits	per	second	29 
MECO	 	 Maui	Electric	Company	30 
MHz	 	 Megahertz	31 
ML	 	 Machine	Learning	32 
MW	 	 Megawatt	33 
NIST	 	 National	Institute	of	Standards	&	Technology	34 
PHEV	 	 Plug-in	Hybrid	Electric	Vehicle	35 
PV	 	 Photovoltaics	36 
SCADA		 Supervisory	Control	and	Data	Acquisition	37 
SQL		 	 Structured	Query	Language	38 
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Tb	 	 Terabyte	1 
TN	 	 Tennessee	2 
TSO	 	 Transmission	System	Operator	3 
UK	 	 United	Kingdom	4 
US	 	 United	States	5 
WAVE	 	 Wireless	Access	in	Vehicular	Environment	6 
WiMAX	 Worldwide	Interoperability	for	Microwave	Access	7 
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