Smart Grid Power Quality

For a downloadable copy of this newsletter, please visit the IEEE Smart Grid Resource Center.

By Mehrdad Boloorchi

Frequent occurrence of power quality events are the results of deficiencies in the power delivery system. Prudently incorporating and integrating of Smart Grid technology, which encompass varieties of monitoring, communicating, and digital computing technologies, into the power delivery system can provide a clean power to the end-user equipment with minimal disturbances.

By Claude Ziad El-Bayeh and Khaled Alzaareer

Distribution networks (DNs), are generally operated using traditional techniques without any smart or monitoring devices. With the large - scale integration of distributed generation (DG) in the distribution power grids, many new opportunities have been evolved for voltage control. Moreover, due to the flexible operation of DG units, active distribution networks are requested to provide ancillary services by exporting reactive power to the transmission networks. In this regard, applications of smart grid technologies are urgently required for voltage control in DNs to achieve the best services presented by DG units while maintaining safe system operation.

By Asma Aziz, Ameen Gargoom and Aman MTO

Necessity and importance of ensuring sustainable, secure, and affordable supply of electricity is undeniable. Power systems around the world are undergoing the continuous shift from centrally dispatched large-scale synchronous generation towards smart grids incorporating intermittent renewable and distributed generation. This change in the generation mix has implications for the whole interconnected system designs, its operational strategies, and the regulatory framework. Though there is no single solution, the smart, responsive grid is undoubtedly the significant proactive investment for the safe energy future. With the increasing number of wind farms integrated at both distribution level as well as transmission levels, they have a unique role to play in future smart grids in maintaining the power continuity and energy balance as part of power quality. This article highlights the capability of modern wind farms to regulate the grid frequency to maintain the energy balance, which is an essential criterion of good power quality in a smart and responsive grid.

By Kay Stefferud and Dami Soyoye

California’s phased implementation of smart inverter functionality addresses power quality issues including issues caused by independent and intermittent renewable energy sources. Recommendations from California’s Smart Inverter Working Group (SIWG) enable smart inverters to improve power quality. Inverters can be harnessed to improve power quality including rapidly changing production caused by clouds moving over solar PV sites. Previously per IEEE 1547, inverters were required to disconnect from the grid when power quality issues arose. Recent changes in IEEE 1547-2018 and the corresponding aligned state interconnection requirements now require smart inverters to sense grid conditions and respond accordingly. Smart inverters can positively impact the utility grid, or at the minimum leave the grid unaffected. Smart inverters are also capable of receiving signals from the utility to support the utility’s distribution system.


Past Issues

To view archived articles, and issues, which deliver rich insight into the forces shaping the future of the smart grid. Older Bulletins (formerly eNewsletter) can be found here. To download full issues, visit the publications section of the IEEE Smart Grid Resource Center.

IEEE Smart Grid Bulletin Editors

IEEE Smart Grid Bulletin Compendium

The IEEE Smart Grid Bulletin Compendium "Smart Grid: The Next Decade" is the first of its kind promotional compilation featuring 32 "best of the best" insightful articles from recent issues of the IEEE Smart Grid Bulletin and will be the go-to resource for industry professionals for years to come. Click here to read "Smart Grid: The Next Decade"