A Special Issue on Operations

For a downloadable copy of this eNewsletter, please visit the IEEE Smart Grid Resource Center.

 By Kash Nodehi, David Heim, Erik Amundson and Ebrahim Vaahedi

Historically, the primary benefits associated with controlling grid-edge devices have been load control and other forms of Demand Response (DR). With new communication and control technologies, it is becoming increasingly possible for utilities to deploy distribution controls and grid-edge devices to address the challenges of an ever-more distributed system.

 By Jay Giri and Manu Parashar

The typical large power system grid is a complex engineering machine that consists of millions of components. Its mission is to provide electricity around the clock to a large number of geographically dispersed customers. Continual changes in customer electricity demand necessitate instantaneous changes in electricity production. Hence the grid is perpetually in a state of flux and conditions are constantly changing every second of the day. The challenge of grid operations in this dynamic environment is to ensure that power system operating conditions stay within safe limits at all times.

 By Severe Houde

The Navy Yard in Philadelphia, being an unregulated electric distribution system, independent of the local utility, began with enormous potential and the private businesses, universities and government entities who continue to invest collaboratively are keenly aware of this. By applying technology that is not yet widespread, The Navy Yard has become a testbed for the trends that will become the future of the utility industry. 

 By Steven E. Collier

The North American electric grid, one of the largest and most complex machines ever created, pales in comparison to the complexity of an emerging new electric network. The century-old grid is proving inadequate in terms of economy, reliability, security, and sustainability. Conventional approaches, adding more generators and transmission lines, are not only not feasible, they won’t address the transformation of a centrally monitored and controlled grid into a distributed grid most of which is not under the control of incumbent utilities. At the same time, another grid, the Internet of Things (IoT), has emerged which is economical, efficient, resilient, and sustainable, even with billions of independent endpoints. It will facilitate visibility and control via an Enernet of Things.

IEEE Smart Grid Newsletter Editors

Past Issues

To view archived articles, and issues, which deliver rich insight into the forces shaping the future of the smart grid, please visit the IEEE Smart Grid Resource Center.

IEEE Smart Grid Newsletter Compendium

The IEEE Smart Grid Newsletter Compendium "Smart Grid: The Next Decade" is the first of its kind promotional compilation featuring 32 "best of the best" insightful articles from recent issues of the IEEE Smart Grid Newsletter and will be the go-to resource for industry professionals for years to come. Click here to read "Smart Grid: The Next Decade"