Smart Grid and Microgrid Resiliency

For a downloadable copy of this eNewsletter, please visit the IEEE Smart Grid Resource Center.

By Vivek Kumar Singh and Manimaran Govindarasu

Can you imagine that a simple cyber-attack can turn your lights off? Do you know more than a dozen U.S. utilities have been constantly targeted through cyber-attacks within the past year? The solution - an attack-resilient grid infrastructure that can quickly detect stealthy cyber-attacks and provide an intelligent incident response to restore the normal grid condition.

By Krishnakumar R. Vasudevan, Vigna K. Ramachandaramurthy, Thanikanti Sudhakar Babu

Resiliency

Power system resilience has become an important factor with ever-increasing natural calamities and manmade threats. According to the US Department of Energy, about 58% of the power outages are the result of extreme weather conditions. On the other hand, the cyber-attacks on the power system pose an additional threat to the resiliency of the power system. A resilient power system should be able to anticipate, withstand and respond to unprecedented contingencies. The prevailing reliability standards of power system are designed to withstand high-probability, low-impact contingencies. However, resiliency targets to withstand the low-probability, high-impact disturbances. Nevertheless, the power system is deemed as critical infrastructure and any damage to it directly inflicts on the country’s economy, since other critical infrastructure depend on electrical power for its operation. For example, a week-long power outage in a region could incur high losses to the telecom industry, which will directly affect the country’s economy.

By Zhaoyu Wang and Kaveh Dehghanpour

This article provides a summary of using networked microgrids to enhance power system resiliency. It will discuss two types of applications: the first one is for a power system with existing networked MGs, and the second one is dynamically forming networked microgrids. The article will also discuss using networked microgrids for pre-event preparation.

By Dr. Mehmet Cintuglu and Dmitry Ishchenko

Microgrids enable distributed energy resource (DER) penetration through their ability to provide a convenient interconnection mechanism between the DER providers, facilities and aggregators to be integrated in the national critical energy delivery infrastructure. Networked microgrids are defined as an ecosystem of cooperating and autonomous microgrids with points of interconnection to both utility electric power system and peer microgrid that enable flexible response to natural disasters, as well as the ability to reconstitute the entire distribution and transmission system from the component microgrids through coordinated restoration actions. A holistic view of the cyber-physical networked microgrid management system is a way of improving resiliency and responding cyber adversarial events. 

By Mohammad Ghiasi, Moslem Dehghani, Taher Niknam, and Abdollah Kavousi-Fard

Abstract: The use of information and communication technologies and computer-based software to enhance the quality, efficiency, and reliability of smart grids (SGs) have brought unwanted threats in these systems; one of the most important of such threats is cyber-attack. Understanding the ways to detect and deal with cyber threats in SGs will increase the resilience of power systems. In this paper, conceptual models of SG vulnerabilities are presented to address the issue of the vulnerability of SG control systems against cyber-attacks. Different scenarios of cyber-attacks are then dealt with in SG control systems to enhance their resilience.


IEEE Smart Grid Newsletter Editors

Past Issues

To view archived articles, and issues, which deliver rich insight into the forces shaping the future of the smart grid, please visit the IEEE Smart Grid Resource Center.

IEEE Smart Grid Newsletter Compendium

The IEEE Smart Grid Newsletter Compendium "Smart Grid: The Next Decade" is the first of its kind promotional compilation featuring 32 "best of the best" insightful articles from recent issues of the IEEE Smart Grid Newsletter and will be the go-to resource for industry professionals for years to come. Click here to read "Smart Grid: The Next Decade"