Live Webinar Events

The Smart Grid describes a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery, and consumption of electrical energy worldwide.

IEEE Smart Grid hosts a series of complimentary webinars on varying aspects of global grid modernization.

 

A Reliable Grid is a Smart Grid
Presented by: Alan M. Ross, VP of Reliability, SD Meyers
Thursday, December 20th, 2018 1:00PM ET 
The application of Reliability Engineering disciplines and principles provides a unique perspective to a Smart Grid. In this webinar we will look at how technology, UIoT, Machine Learning and Condition Based Monitoring can positively affect the long-term reliability of the Grid. While reliability engineering starts at the design phase for asset management decisions, an even greater impact will be on the system those assets comprise. For the most part we are redesigning systems, not designing from scratch, adding technological advances while integrating wide-scale DER and DR into the grid. Read more.
Click Here to Register NOW

Smart Buildings: Approaches to Promoting Reliability of Smart Grid
Presented by: Raj Gopal
Thursday, January 31st, 2018 1:00PM ET 
To ensure meeting the reliability goals of the Smart Grid, Demand Response programs are offered by electric power utilities with incentives to participating customers in order to match power generation to demand and prevent network instability during peak demand periods. According to the Energy Information Administration’s (EIA) 2012 commercial building energy consumption survey (CBECS), large office buildings in the USA with floor area > 9,000 m¬2 consume annually 180 billion kWh. This comprises of HVAC (cooling 17%, ventilation 25%), lighting (17%) and plug loads comprising of computers, monitors, printers, servers and other electrical loads associated with occupant productivity (17%) and the rest miscellaneous loads. These loads mostly occur, given the occupancy schedule, during the on-peak periods for a summer peaking utility. The need to address Automatic Fault Detection, Diagnosis and System Restoration (AFDDS) becomes important when implementing demand response (DR) strategies whether it is price responsive or resource responsive in office buildings. Should faults occur in the building HVAC system, the kWh energy consumption and KW demand will increase negating the objectives of the Demand Response program. This presentation will cover: definitions for Smart Building HVAC System; Smart Building Facility Management System (SBFMS) Architecture; development of algorithms for AFDDS for an example HVAC system with self-healing and resiliency feature and discuss the results of ‘Smart Voice Activated Speaker’ experiments with lighting and Plug loads and opportunities for its integration with SBFMS. Read more. 
Click Here to Register NOW